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Hypothèse

Dans tout ce chapitre, n, p,q,r ∈ N∗ et le corps K désigne R ou C.

1 Matrices et opérations matricielles

1.1 Définitions et notations

Définition 20.1

On appelle matrice à n lignes et p colonnes à coefficients dans K, toute famille A = (ai j)1≤i≤n
1≤ j≤p

d’éléments

de K. Une telle matrice est dite de taille (n, p).

On représente une matrice de taille (n, p) par un tableau à n lignes et p colonnes :

A =



a11 a12 · · · a1 j · · · a1p

a21 a22 · · · a2 j · · · a2p
...

...
...

...
ai1 ai2 · · · ai j · · · aip
...

...
...

...
an1 an2 · · · an j · · · anp


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Calcul matriciel

Notation. On note Mn,p(K) l’ensemble des matrices à n lignes et p colonnes à coefficients dans K.

Pour tout (i, j) ∈ J1,nK× J1, pK, ai j est appelé coefficient d’indice (i, j) : c’est le coefficient à l’intersection de la
i-ième ligne et j-ième colonne. Étant donné une matrice X , on peut aussi noter Xi j ou encore

[
X
]

i j le coefficient

d’indice (i, j) de X .

Notation. Comme pour les suites qu’on note (un) et non (un)n∈N, lorsqu’il n’y a pas d’ambiguité sur les valeurs
n, p, on pourra noter A = (ai j) ou encore A = (Ai j) sans préciser les valeurs possibles prises par i et j (il suffit par
exemple de préciser “A ∈Mn,p(K)” au préalable).

Il y a ambiguité sur la notation : l’expression “a123” peut désigner ai j pour (i, j) = (12,3) ou (i, j) = (1,23). En
pratique, cela ne pose que très rarement problème. Si c’est le cas, on pourra noter ai, j plutôt que ai j, de sorte
qu’on distingue bien a12,3 et a1,23.

Définition 20.2 – Matrices de formes particulières

• Toute matrice n’ayant qu’une seule ligne (n = 1) est appelée matrice ligne. C’est donc un élément
de M1,p(K). (

a11 · · · a1p
)

• Toute matrice n’ayant qu’une seule colonne (p = 1) est appelée matrice colonne. C’est donc un
élément de Mn,1(K).  a11

...
an1


• Une matrice avec n lignes et n colonnes est appelée matrice carrée (de taille n). C’est donc un

élément de Mn,n(K). On note
Mn(K) :=Mn,n(K)

Remarque. Contrairement à la notation ai j, pour l’ensemble Mn,p(K), la virgule est obligatoire : Mnp(K)
désigne l’ensemble des matrices de taille (np,np) !

Exemple 1.

A =


1 2
−1 −2
3 5
5 3

 ∈M4,2(K) B =
(

π
)
∈M1(K) C =


1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 · · · 3
...

...
...

...
1 2 3 · · · n

 ∈ . . . . . . . . .

Exemple 2. La matrice nulle de taille (n, p) :

0n,p :=


0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 ∈Mn,p(K)

La matrice identité de taille n :

In :=


1

1 0
1

0 . . .

1

 ∈Mn(K)

2 / 16 G. Peltier



Calcul matriciel

Définition 20.3

Deux matrices A et B de même taille sont dites égales et on note A = B si leurs coefficients sont deux à
deux égaux, i.e. Ai j = Bi j pour tout couple (i, j). Il s’agit d’une relation d’équivalence sur chaque ensemble
Mn,p(K).

1.2 Addition et multiplication par un scalaire

Définition 20.4 – Lois + et λ · dans Mn,p(K)

Soit A,B ∈Mn,p(K). On note A+B la matrice de Mn,p(K) dont les coefficients sont (pour i ∈ J1,nK et
j ∈ J1, pK) : [

A+B
]

i j = Ai j +Bi j

Soit λ ∈K. On note λA la matrice de Mn,p(K) dont les coefficients sont :[
λA
]

i j = λAi j

Autrement dit, l’addition et la multiplication par un scalaire s’effectuent “coefficient par coefficient” :

Exemple 3.

A =

(
1 2 3
4 5 6

)
et B =

(
2 0 −2
−3 3 9

)
=⇒ A+B =

(
3 2 1
1 8 15

)
A =

(
−1 5

)
=⇒ 2A =

(
−2 10

)
et −A =

(
1 −5

)
Exemple 4. Pour tout A ∈Mn,p(K), 0A = 0n,p et 1A = A.

On ne peut pas additionner des matrices de tailles différentes. L’opération A+B n’a de sens que si A,B
ont le même nombre de lignes et le même nombre de colonnes.

Théorème 20.5

(Mn,p(K),+) est un groupe abélien.

Démonstration. On vérifie toutes les assertions de la définition.
Soit A,B,C ∈Mn,p(K).

1. Montrons que + est une l.c.i. sur Mn,p(K). Pour cela, justi-
fions que A+B ∈Mn,p(K). A+B est une matrice de taille
(n, p), et pour tout (i, j) ∈ J1,nK× J1, pK, son coefficient
d’indice (i, j) est Ai j +Bi j , qui appartient bien à K. Donc
A+B ∈Mn,p(K).

2. Montrons que + est associative sur Mn,p(K). Pour tous i, j :[
(A+B)+C)

]
i j =

[
A+B

]
i j+Ci j =(Ai j+Bi j)+Ci j =Ai j+Bi j+Ci j[

A+(B+C)
]

i j =Ai j+
[
B+C

]
i j =Ai j+(Bi j+Ci j)=Ai j+Bi j+Ci j

les dernières égalités étant vraies car + est associative sur
K. D’où (A+B)+C = A+(B+C) et + est associative sur
Mn,p(K).

3. Montrons que + est commutative sur Mn,p(K). Pour tous
i, j : [

A+B
]

i j = Ai j +Bi j = Bi j +Ai j =
[
B+A

]
i j

Ainsi, A+B = B+A, d’où + est commutative sur Mn,p(K).

4. La matrice nulle 0n,p vérifie

[
A+0n,p

]
i j = Ai j +0 = Ai j

et donc A+0n,p = A. De plus, et comme on a montré que +
est commutative, on a automatiquement 0n,p+A=A. Ainsi,
0n,p est élément neutre pour +.

5. Enfin,

[
A+(−A)

]
i j = Ai j +

[
−A
]

i j = Ai j −Ai j = 0

et donc A + (−A) = 0n,p. Par commutativité, on a aussi
(−A)+A = 0n,p. Ainsi, la matrice −A est le symétrique de
A pour +.
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1.3 Produit matriciel

Définition 20.6 – Produit matriciel

Soit A ∈Mn,p(K) et B ∈Mp,q(K).
Le produit de A et B est la matrice notée AB de Mn,q(K) qui est définie par :

∀i ∈ J1,nK ∀ j ∈ J1,qK
[
AB
]

i j :=
p

∑
k=1

AikBk j

Le produit AB n’a donc un sens que si le nombre de colonnes de A est égal au nombre de lignes de B
(ici p). En particulier, il est possible que le produit AB ait un sens, mais pas le produit BA.

Méthode

Pour calculer un produit AB, on peut disposer les matrices A et B de la façon suivante :

p lignes

q colonnes

b1 j

b2 j
...

bk j
...

bp j



n lignes

p colonnes ai1 ai2 · · · aik · · · aip



 ci j

 ∈Mn,q(K)

Le coefficient ci j s’obtient à partir de la i-ième ligne de A et la j-ième colonne de B, en calculant une
somme de produits :

ci j = ai1 ×b1 j + ai2 ×b2 j + . . . + aip ×bp j

Exemple 5. Soit A =

 1 2
3 4
5 6

 et B =

(
1 −3 4
−1 4 5

)
. Alors :

(
1 −3 4
−1 4 5

)  1 2
3 4
5 6


AB =

 1 2
3 4
5 6

 et BA =

(
1 −3 4
−1 4 5

)
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Cet exemple montre qu’en général AB ̸= BA (ces deux matrices peuvent même être de tailles différentes). On
peut aussi écrire un produit en disposant les matrices de manière “naturelle” :

Exemple 6. Soit A =

(
1 0
−1 0

)
et B =

(
1 2 3
4 5 6

)
.

Le produit AB =

(
1 0
−1 0

)(
1 2 3
4 5 6

)
=

(
1 2 3
−1 −2 −3

)
a un sens mais...

Le produit BA =

(
1 2 3
4 5 6

)(
1 0
−1 0

)
n’a pas de sens car ............................................................

Théorème 20.7 – “Associativité” du produit

Soit (A,B,C) ∈Mn,p(K)×Mp,q(K)×Mq,r(K). Alors

(AB)C = A(BC)

Démonstration. Soit i ∈ J1,nK et j ∈ J1,rK. On a

[(AB)C]i j =
q

∑
k=1

[
AB
]

ikCk j =
q

∑
k=1

(
p

∑
ℓ=1

AiℓBℓk

)
Ck j =

q

∑
k=1

p

∑
ℓ=1

AiℓBℓkCk j

[A(BC)]i j =
p

∑
k=1

Aik
[
BC
]

k j =
p

∑
k=1

Aik

(
q

∑
ℓ=1

BkℓCℓ j

)
=

p

∑
k=1

q

∑
ℓ=1

AikBkℓCℓ j

On part de [(AB)C]i j. Comme k, ℓ sont muettes, on peut échanger leurs rôles :

[(AB)C]i j =
q

∑
ℓ=1

p

∑
k=1

AikBkℓCℓ j

Enfin, les doubles sommes sont rectangulaires, on peut donc les permuter : cela équi-
vaut à les retransformer en ∑

(k,ℓ)∈J1,pK×J1,qK
(. . .). Finalement

[
(AB)C

]
i j =

[
A(BC)

]
i j.

Par arbitraire sur i, j, on en déduit que (AB)C = A(BC).

Théorème 20.8 – Bilinéarité du produit

Soit A,B,C trois matrices. Soit λ ,µ ∈K. Alors, lorsque les opérations ci-dessous ont un sens :

(λA+µB)C = λAC+µBC

A(λB+µC) = λAB+µAC

En particulier, λ (AB) = A(λB) = (λA)B.
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1.4 Matrices élémentaires

Notation. Pour tous entiers i et j, on définit le symbole de Kronecker par : δi j :=

{
1 si i = j
0 sinon

Définition 20.9

Soit (k, ℓ) ∈ J1,nK× J1, pK. On définit la matrice élémentaire Ekℓ ∈Mn,p(K) comme étant la matrice dont
tous les coefficients sont nuls sauf celui d’indice (k, ℓ), qui vaut 1.

Ainsi, Ekℓ est la matrice avec un 1 à l’intersection de la ligne k et de la colonne ℓ, et 0 ailleurs :

Ekℓ =



0

0 ... 0
0

0 · · · 0 1 0 · · · 0
0

0 ... 0
0


(col. ℓ)

(ligne k)

Dit autrement : [
Ekℓ
]

i j
= δikδ jℓ =

{
1 si i = k et j = ℓ

0 sinon

Chaque couple (k, ℓ) donne une matrice Ekℓ différente : comme il y a n valeurs possibles pour k et p valeurs pour
ℓ, il y a donc np matrices élémentaires dans l’ensemble Mn,p(K).

Exemple 7. Dans M2,3(K), il y a 6 matrices élémentaires :

E11 =

(
1 0 0
0 0 0

)
E12 =

(
0 1 0
0 0 0

)
E13 =

(
0 0 1
0 0 0

)

E21 =

(
0 0 0
1 0 0

)
E22 =

(
0 0 0
0 1 0

)
E23 =

(
0 0 0
0 0 1

)
Remarque. La notation Ekℓ n’est pas officielle. Certains auteurs utilisent plutôt Ek,ℓ ou encore E(k, ℓ).

Théorème 20.10

Soit i ∈ J1,nK, j,k ∈ J1, pK et ℓ ∈ J1,qK. On considère les matrices élémentaires E i j ∈Mn,p(K) et Ekℓ ∈
Mp,q(K). Alors

E i jEkℓ = δ jkE iℓ =

{
E iℓ si j = k
0 si j ̸= k

Démonstration. Soit u ∈ J1,nK et w ∈ J1,qK. Il suffit de montrer que
[
E i jEkℓ

]
uw

=
[
δ jkE iℓ

]
uw

.
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[
E i jEkℓ

]
uw

=
p

∑
v=1

[
E i j]

uv

[
Ekℓ]

vw

=
p

∑
v=1

δiuδ jvδkvδℓw

• Si j ̸= k, pour tout v ∈ J1, pK, on a toujours j ̸= v ou k ̸= v si bien que δ jvδkv = 0.
Donc la somme ci-dessus est nulle. Alors[

E i jEkℓ
]

uw
= 0

• Si j = k, on a δ jvδkv = δ
2
jv = δ jv et le seul terme non nul de la somme correspond

à celui pour lequel v = j. Ainsi,[
E i jEkℓ

]
uw

= δiuδℓw =
[
E iℓ
]

uw

Finalement, on peut regrouper les deux cas ci-dessus en écrivant :[
E i jEkℓ

]
uw

= δ jk

[
E iℓ
]

uw
=
[
δ jkE iℓ

]
uw

(car par définition [λA]uw=λ [A]uw)

2 L’anneau (Mn(K),+,×)

Étant donné deux matrices carrées A et B de même taille (A,B ∈Mn(K)), le produit AB aura toujours un sens.
Ainsi, × est une l.c.i. sur Mn(K). On va montrer que la loi × va lui conférer une structure d’anneau que n’ont pas
les espaces Mn,p(K) avec n ̸= p.

2.1 Structure de Mn(K)

Le but de cette partie est de montrer que (Mn(K),+,×) est un anneau. Il faut donc montrer que :

1. (Mn(K),+) est un groupe abélien.

2. (Mn(K),×) est un monoide.

3. × est distributive sur +.

On a déjà montré par le Théorème 20.5 que (Mn(K),+) est un groupe abélien. De plus, la distributivité de ×
sur + est une conséquence du Théorème 20.8 avec λ = µ = 1. Il reste donc à montrer que (Mn(K),×) est un
monoïde.

• On a vu que le produit de deux matrices de Mn(K) est toujours bien défini. Ainsi, la loi × est une l.c.i. sur
Mn(K).

• De plus, par le Théorème 20.7 avec (p,q,r) = (n,n,n), la loi × est associative sur Mn(K).

• Enfin, le Théorème suivant montre que la matrice identité In est élément neutre de × :

G. Peltier 7 / 16



Calcul matriciel

Théorème 20.11

Soit A ∈Mn(K). Alors AIn = InA = A.

Démonstration. Soit i,k ∈ J1,nK. Alors

[
AIn
]

ik =
n

∑
j=1

Ai j
[
In
]

jk

Or,
[
In
]

jk = δ jk. On peut donc garder uniquement le terme de la somme pour j = k :
les autres termes sont nuls. [

AIn
]

ik = Aikδkk = Aik

Donc par arbitraire sur i,k, on a AIn = A. On montre de même que InA = A.

On a donc montré que (Mn(K),×) est un monoide.

Théorème 20.12

(Mn(K),+,×) est un anneau. Il est non commutatif si n ≥ 2.

Démonstration. On a vu plus haut que (Mn(K),+,×) est un anneau. Il reste à montrer la non commutativité.

On pose

A =

 2
0

1

 ∈Mn(K) B =

 1
0

1

 ∈Mn(K)

Alors

AB = BA =

On en déduit donc que AB ̸= BA.

Remarque. L’application

M1(K)→K
(a) 7→ a

est un isomorphisme d’anneaux. On peut alors identifier M1(K) à K. En particulier, M1(K) est commutatif.
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2.2 Matrices carrées de forme particulière

Définition 20.13 – Matrice scalaire

On appelle matrice scalaire une matrice de la forme λ In avec λ ∈K (et n ∈ N∗).

Notation. Pour tous α1, · · · ,αn ∈K, on note

diag(α1,α2, · · · ,αn) :=


α1 0

α2
. . .

0 αn



Définition 20.14 – Matrice diagonale

Soit A ∈Mn(K). On dit que A est diagonale s’il existe α1, . . . ,αn ∈K tels que

A = diag(α1,α2, · · · ,αn)

Autrement dit, A est diagonale si :

∀(i, j) ∈ J1,nK2 i ̸= j =⇒ Ai j = 0

Remarque. La forme générale d’une matrice diagonale est donc
∗ 0

∗
. . .

0 ∗


où chaque symbole ∗ peut être remplacé par une valeur quelconque dans K (pas forcément la même). Nous
allons utiliser ce formalisme régulièrement dans la suite pour présenter les définitions.

Exemple 8. Les matrices suivantes sont diagonales :

0n,n

(
1 0
0 0

)


1 0
2

. . .

0 n

 In

Exemple 9. Toute matrice scalaire est diagonale. La réciproque est fausse si n ≥ 2.

Remarque. Si A = (ai j), on appelle diagonale de A tous les coefficients aii avec 1 ≤ i ≤ n. Cette notion existe

même si A n’est pas une matrice diagonale. Par exemple la diagonale de

(
1 2
3 4

)
est constituée des coefficients

1 et 4.
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Théorème 20.15

Soit A,B ∈Mn(K) deux matrices diagonales. Alors AB est une matrice diagonale. De plus, A et B com-
mutent, c’est-à-dire AB = BA.

Démonstration. Soit A =

 α1 0 0

0
. . . 0

0 0 αn

 et B =

 β1 0 0

0
. . . 0

0 0 βn

 deux matrices diagonales de Mn(K). On

peut vérifier (avec la formule du produit) que :

AB =

 α1β1 0 0

0
. . . 0

0 0 αnβn

 et BA =

 β1α1 0 0

0
. . . 0

0 0 βnαn


Or, pour tout i ∈ J1,nK, on a αiβi = βiαi car αi,βi ∈ K et la multiplication est commutative sur K. D’où AB =
BA.

Définition 20.16 – Matrice triangulaire

Soit A = (ai j) ∈Mn(K).

• On dit que A est (une matrice) triangulaire supérieure si A est de la forme
∗ ∗

∗
. . .

0 ∗


ce qui revient à dire que

∀(i, j) ∈ J1,nK2 i > j =⇒ ai j = 0

• On dit que A est (une matrice) triangulaire inférieure si A est de la forme
∗ 0

∗
. . .∗ ∗


ce qui revient à dire que

∀(i, j) ∈ J1,nK2 i < j =⇒ ai j = 0

• On dit que A est (une matrice) triangulaire si A est triangulaire inférieure ou triangulaire supérieure.

Notation. On note

• Dn(K) l’ensemble des matrices diagonales de taille n.

• T +
n (K) l’ensemble des matrices triangulaires supérieures de taille n.

• T −
n (K) l’ensemble des matrices triangulaires inférieures de taille n.

• Tn(K) = T +
n (K)∪T −

n (K) l’ensemble des matrices triangulaires de taille n.

Exemple 10. A=

(
4 2
0 3

)
est triangulaire .................... B=

(
0 0
1 3

)
est triangulaire ....................................................

Exemple 11. Une matrice est triangulaire supérieure et inférieure si et seulement si elle est diagonale. Autrement
dit Dn(K) = T +

n (K)∩T −
n (K).
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Théorème 20.17

Le produit de deux matrices triangulaires supérieures est une matrice triangulaire supérieure.
Le produit de deux matrices triangulaires inférieures est une matrice triangulaire inférieure.

De plus, on peut vérifier que quand on fait le produit de deux matrices triangulaires supérieures, les diagonales
se multiplient terme à terme :


α1 ∗

α2
. . .

0 αn

×


β1 ∗

β2
. . .

0 βn

=


α1β1 ∗

α2β2
. . .

0 αnβn


Idem pour le produit de deux matrices triangulaires inférieures :


α1 0

α2
. . .∗ αn

×


β1 0

β2
. . .∗ βn

=


α1β1 0

α2β2
. . .∗ αnβn



2.3 Puissances de matrice

Pour toute matrice A ∈Mn(K), le produit AA a un sens.

Définition 20.18

Soit A ∈Mn(K) et k ∈ N∗. On définit la puissance k-ième de A par : Ak = AAA . . .A︸ ︷︷ ︸
k fois

Par convention, A0 = In.

(Mn(K),+,×) étant un anneau, Ak correspond à l’itéré k-ième de A pour la loi ×.

Les matrices carrées sont les seules matrices qu’on peut élever à la puissance. Si A ∈Mn,p(K) avec n ̸= p, alors
Ak n’a de sens que si k = 1 (et écrire A1 est maladroit...).

Exemple 12. Si A = diag(α1, · · · ,αn), alors Ak = diag(αk
1 , · · · ,αk

n).

Exemple 13. Si A =

(
0 2
0 0

)
, alors A2 =

(
0 0
0 0

)
= 02,2. Ainsi, si k ≥ 2, Ak = A2Ak−2 = 02,2Ak−2 = 02,2.

En particulier, A est un diviseur de zéro dans M2(K) : l’anneau M2(K) n’est donc pas intègre (et de même pour
Mn(K) avec n ≥ 2).
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Théorème 20.19 – Formules du binôme et de an −bn – version Mn(K)

Soit A,B ∈Mn(K) et m ∈ N.

AB = BA =⇒ (A+B)m =
m

∑
k=0

(
m
k

)
AkBm−k

AB = BA =⇒ Am −Bm = (A−B)
m−1

∑
k=0

AkBm−1−k

Exemple 14. Pour tout m ∈ N∗, calculer la puissance m-ième de la matrice A =

(
1 2
0 1

)
.

On écrit A = B+ I2 avec B =

(
0 2
0 0

)
. Comme InB = BIn = B, il est clair que In et B

commutent. Ainsi, par la formule du binôme

Am = (B+ I2)
m =

m

∑
k=0

(
m
k

)
BkIm−k

n =
m

∑
k=0

(
m
k

)
Bk

Or, Bk = 02,2 pour tout k ≥ 2 par l’Exemple 13. Ainsi, comme m ≥ 1,

Am =
1

∑
k=0

(
m
k

)
Bk +

m

∑
k=2

(
m
k

)
Bk avec la convention ∑

k∈∅
(. . .) = 02,2

=
1

∑
k=0

(
m
k

)
Bk +02,2

= B0 +mB1 = I2 +mB

Ainsi, A =

(
1 0
0 1

)
+

(
0 2m
0 0

)
=

(
1 2m
0 1

)
.

2.4 Inverse d’une matrice

Définition 20.20 – Matrice inversible

Soit A ∈Mn(K). On dit que A est inversible si

∃B ∈Mn(K) AB = BA = In

Il n’y a alors qu’une seule matrice B ∈Mn(K) vérifiant cette assertion et on note A−1 := B. La matrice
A−1 est appelée la matrice inverse de A.

Notation. On note GLn(K) l’ensemble des matrices inversibles de taille n. Cet ensemble est appelé le groupe
linéaire.
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Autrement dit, A est inversible si elle est symétrisable pour la loi × dans Mn(K), et A−1 est son (unique)
symétrique pour la loi ×. Comme Mn(K) est non commutatif (sauf si n = 1), il faudrait en théorie vérifier que
AB = In et BA = In pour la même matrice B avant de conclure que A est inversible. Mais Mn(K) est particulier :

Théorème 20.21 – Être inversible “d’un seul côté” suffit pour être inversible

Soit A ∈Mn(K). Les trois assertions suivantes sont équivalentes :

1. ∃B ∈Mn(K) AB = BA = In (càd A est inversible)

2. ∃B ∈Mn(K) BA = In

3. ∃B ∈Mn(K) AB = In

Démonstration. Admis pour le moment.

Exemple 15. La matrice A =

(
2 0
0 3

)
est inversible : en effet avec B =

(
2−1 0
0 3−1

)
, on vérifie que AB = I2.

Ainsi, A est inversible et B = A−1.

Exemple 16. Montrer que la matrice C =

(
1 1
0 2

)
est inversible.

On pose D =

(
a b
c d

)
avec a,b,c,d ∈ R. Cherchons a,b,c,d tels que CD = I2.

CD = I2

⇐⇒
(

1 1
0 2

)(
a b
c d

)
=

(
1 0
0 1

)
⇐⇒

(
a+ c b+d

2c 2d

)
=

(
1 0
0 1

)

⇐⇒


a+ c = 1
b+2d = 0
2c = 0
2d = 1



d =
1
2

c = 0
a = 1

b =−1
2

On trouve donc que D =

 1 −1
2

0
1
2

 convient. Donc C est inversible et C−1 = D =

1
2

(
2 −1
0 1

)
.

Comme GLn(K) est l’ensemble des éléments inversibles de l’anneau Mn(K), on a immédiatement :
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Théorème 20.22

(GLn(K),×) est un groupe. En particulier, pour toutes matrices A,B ∈ GLn(K) :

• A−1 ∈ GLn(K) et (A−1)−1 = A.

• AB ∈ GLn(K) et (AB)−1 = B−1A−1.

• Pour tout k ∈ N∗ Ak ∈ GLn(K) et (Ak)−1 = (A−1)k =: A−k

3 Transposition

3.1 Définition et propriétés

Définition 20.23 – Matrice transposée

Soit A ∈ Mn,p(K). On appelle (matrice) transposée de A, la matrice notée A⊤ de Mp,n(K) dont les
coefficients sont :

∀(i, j) ∈ J1, pK× J1,nK
[
A⊤]

i j = A ji

En d’autres termes, A⊤ est obtenu à partir de A en faisant la “symétrie” de A par rapport à sa “diagonale”.

Exemple 17. Si A =

 1 0 5
2 −2 0
0 3 4

 alors A⊤ =

 1
−2

4

.

Exemple 18. Si A =

(
1 3 5
2 4 6

)
alors A⊤ = .

Théorème 20.24

Soit A,B ∈Mn,p(K).

1. (A⊤)⊤ = A.

2. Pour tous λ ,µ ∈K, (λA+µB)⊤ = λA⊤+µB⊤.

Démonstration. Montrons la première assertion. Pour tout (i, j) ∈ J1,nK× J1, pK,[
(A⊤)⊤

]
i j
=
[
A⊤
]

ji
= Ai j

d’où (A⊤)⊤ = A par arbitraire sur i, j. De même,[
(λA+µB)⊤

]
i j
= [λA+µB] ji = λA ji +µB ji

= λ
[
A⊤]

i j +µ
[
B⊤]

i j

=
[
λA⊤+µB⊤

]
i j

donc (λA+µB)⊤ = λA⊤+µB⊤.
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Théorème 20.25

Soit A ∈Mn,p(K) et B ∈Mp,q(K). Alors (AB)⊤ = B⊤A⊤.

Démonstration. Pour tous (i,k) ∈ J1,nK× J1,qK[
(AB)⊤

]
ik
= [AB]ki =

p

∑
j=1

Ak jB ji

=
p

∑
j=1

[
A⊤]

jk

[
B⊤]

i j

=
p

∑
j=1

[
B⊤]

i j

[
A⊤]

jk

=
[
B⊤A⊤

]
ik

d’où le résultat par arbitraire sur (i,k).

Théorème 20.26

Soit A ∈ GLn(K). Alors A⊤ ∈ GLn(K) et (A⊤)−1 = (A−1)⊤.

Démonstration. Montrons que (A−1)⊤ est la matrice inverse de A⊤. Il suffit de montrer
que A⊤(A−1)⊤ = In.
Or, par la proposition précédente,

A⊤(A−1)⊤ =
(

A−1A
)⊤

= (In)
⊤ = In

Ainsi, A⊤ ∈ GLn(K) et (A⊤)−1 = (A−1)⊤.

3.2 Matrices carrées symétriques et antisymétriques

Définition 20.27 – Matrice symétrique

Soit A ∈Mn(K).

• On dit que A est symétrique si A⊤ = A càd si pour tout (i, j) ∈ J1,nK2, Ai j = A ji.

• On dit que A est antisymétrique si A⊤ =−A càd si pour tout (i, j) ∈ J1,nK2, Ai j =−A ji.

Notation. On note Sn(R) l’ensemble des matrices symétriques de taille n et An(R) l’ensemble des matrices
antisymétriques de taille n. Ces deux notions n’ont de sens que pour une matrice carrée : si A n’est pas carrée,
alors A et A⊤ n’ont pas la même taille et ne peuvent donc pas être égales.
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Exemple 19. La matrice A =

(
1 5
5 2

)
est symétrique car A⊤ = A.

Exemple 20. La matrice A =

(
0 −2
2 0

)
est antisymétrique car A⊤ = =−A.

Théorème 20.28

Si une matrice A est antisymétrique, alors les coefficients sur sa diagonale sont nuls.

Démonstration. Soit A ∈ An(R). Pour tout (i, j) ∈ J1,nK2, on a A ji =−Ai j. En particulier,

Aii =−Aii =⇒ 2Aii = 0 =⇒ Aii = 0

Donc tous les coefficients diagonaux de A sont nuls.

4 Méthodes pour les exercices

Méthode

Pour calculer les puissances d’une matrice A ∈Mn(R), on peut :

• Calculer quelques puissances pour conjecturer une formule, puis la montrer par récurrence.

• Exprimer A comme la somme de deux matrices et utiliser la formule du binôme.

• D’autres méthodes seront possibles plus tard...

Méthode

Pour montrer qu’une matrice A ∈Mn(R) est inversible, on peut :

• Chercher une matrice B ∈Mn(R) telle que AB = In ou BA = In

• D’autres méthodes seront possibles plus tard...
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